6 research outputs found

    Resilience-Performance Tradeoff Analysis of a Deep Neural Network Accelerator

    Get PDF
    Nowadays, Deep Neural Networks (DNNs) are one of the most computationally-intensive algorithms because of the (i) huge amount of data to be transferred from/to the memory, and (ii) the huge amount of matrix multiplications to compute. These issues motivate the design of custom DNN hardware accelerators. These accelerators are widely used for low-latency safety-critical applications such as object detection in autonomous cars. Safety-critical applications have to be resilient with respect to hardware faults and Deep Learning (DL) accelerators are subjected to hardware faults that can cause functional failures, potentially leading to catastrophic consequences. Although DNNs possess a certain level of intrinsic resilience, it varies depending on the hardware on which they are run. The intent of the paper is to assess the resilience of a systolic-array-based DNN accelerator in the presence of hardware faults, in order to identify the architectural parameters that may mainly impact the DNN resilience

    Dependability of Alternative Computing Paradigms for Machine Learning: hype or hope?

    Get PDF
    Today we observe amazing performance achieved by Machine Learning (ML); for specific tasks it even surpasses human capabilities. Unfortunately, nothing comes for free: the hidden cost behind ML performance stems from its high complexity in terms of operations to be computed and the involved amount of data. For this reasons, custom Artificial Intelligence hardware accelerators based on alternative computing paradigms are attracting large interest. Such dedicated devices support the energy-hungry data movement, speed of computation, and memory resources that MLs require to realize their full potential. However, when ML is deployed on safety-/mission-critical applications, dependability becomes a concern. This paper presents the state of the art of custom Artificial Intelligence hardware architectures for ML, here Spiking and Convolutional Neural Networks, and shows the best practices to evaluate their dependability

    A low-cost susceptibility analysis methodology to selectively harden logic circuits

    No full text
    International audienceSelecting the ideal trade-off between reliability and cost associated with a fault tolerant architecture generally involves an extensive design space exploration. Employing state-of-the-art susceptibility estimation methods makes it unscalable with design complexity. In this paper we introduce a low-cost susceptibility analysis methodology that helps identifying the most vulnerable circuit elements for hardening with less computational effort and orders of magnitude faster. Our experimental results show that the methodology offers huge gain in terms of computational effort (2,500× faster) in comparison with a fault-injection based method and produces results within acceptable degree of accuracy

    Input-Aware Approximate Computing

    No full text
    In the last decade, Approximate Computing (AxC) has been extensively employed to improve the energy efficiency of computing systems, at different abstraction levels. The main AxC goal is reducing the energy budget used to execute error-tolerant applications, at the cost of a controlled and intrinsically-tolerable quality degradation. An important amount of work has been done in proposing approximate versions of basic operations, using fewer resources. From a hardware standpoint, several approximate arithmetic operations have been proposed. Although effective, such approximate hardware operators are not tailored to a specific final application. Thus, their effectiveness will depend on the actual application using them. Taking into account the target application and the related input data distribution, the final energy efficiency can be pushed further. In this paper we showcase the advantage of considering the data distribution by designing an input-aware approximate multiplier specifically intended for a high pass FIR filter, where the input distribution pattern for one operand is not uniform. Experimental results show that we can significantly reduce the power consumption while keeping an error rate lower than state of the art approximate multipliers
    corecore